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Abstract. The time needed for convergence to a stable state starting from an initial state 
having macroscopic overlap with a stored state is studied numerically for networks up to 
N = lo5 neurons. Although such systems are much larger than those traditionally used in 
studying neural networks, they are still too small to extract reliable information about the 
asymptotic behaviour of the convergence time. 

The body of neural network knowledge has grown very quickly during the past few 
years through a variety of analytical and numerical techniques. For strongly connected 
networks, analytical methods have been very successful at illuminating many of the 
static properties [ 1-4, 51, however, the dynamical properties have resisted analytic 
solutions and have mainly been studied via numerical means [6,7]. The use of 
numerical methods requires careful attention to the effect the finite system size has on 
the quantities of interest. One of the widely studied dynamical problems is the 
determination of the critical overlap, or radius of attraction, and in that case Forrest 
[6] and Kanter and Sompolinsky [7] have shown how to account for the finite size of 
the network and extract meaningful information about the asymptotic, N + 00, limit 
from networks of only a few hundred to a few thousand neurons. 

A closely related, though less well studied dynamical problem, is that of the time 
needed for convergence to one of the stored states starting from an overlap greater 
than the critical overlap [4,8]. In this case, there is no simple prescription for dealing 
with the finite size effects and one must proceed with caution when dealing with ‘small’ 
systems. The first question to be answered is: how large is a small system?. Experience 
in calculating certain static properties of the Hopfield model has shown the necessity 
of considering system sizes up to N=3 x lo4 before the large N behaviour could be 
reliably extracted [9]. Hence, there is a precedent for believing that systems N - lo3 
are too ‘small’ to be useful in predicting asymptotic behaviour of neural networks. 

Recently Kanter [8] has studied this problem of convergence time in the Hopfield 
model via numerical simulations on networks of up to a few thousand neurons and 
drew some unexpected conclusions regarding the asymptotic behaviour of the average 
convergence time and the distribution of the convergence times. In this paper these 
extrapolations will be checked against system sizes up to N = IOs using a multispin 
coding algorithm [ 101 running on a Cray-YMP/832. 

The numerical algorithm has been discussed in detail previously [9, 101 and here 
only a sketch of the essentials will be given. In the Hopfield model at zero temperature, 
the time evolution of the spins is given by the deterministic formula: 

S , ( t +  1) = sgn(h,(t)) (1) 
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where 
D 

and m ” ( t ) = ( t / N ) Z ,  t , ” S , ( t ) ,  H(r)=Z,,@ t , ” { fSJ ( t ) ,  and P is the number of stored 
states. The algorithm stores only the tf and S, variables and not the coupling matrix 
J q .  These variables are stored as one bit in an integer word or B spins per word on 
machines with B bits per word. The calculation of the overlaps is then carried out 
with logical operations acting on these integer variables: 

N I B  

N m @ ( t ) =  N - 2  POPCNT(S,?OoJ(t))  
J = L  

where {,? is an integer word containing B spins from the state t@, uJ,(t) is an integer 
word containing B spins from the state S ( t ) ,  0 stands for the ‘exclusive or’ logical 
operator and POPCNT is a function which counts the number of bits set to one in 
the argument. To calculate the local fields, H , ( t ) ,  one sums over p in equation ( 3 . 2 )  
by multiplying Nm@ by +1 (-1) if the bit representing 6: is 1 (0). Then, the spin S, 
is updated by: S , ( t + l ) = ( H , ( t ) + N P ) / ( P N + P )  if S , ( t )=+l ,  or S , ( t + l ) =  
(Hi ( t )  + N P ) /  ( P N  - P )  if S,  ( t )  = 0. 

When using parallel dynamics, the overlaps need only be calculated once at the 
beginning of the network update and then stored until used for calculating the local 
fields. In that way the algorithm is about as fast as a normal procedure which does 
not use multispin coding, but it can handle systems up to B times as large [9]. 

With the advantages of this method, the time needed for convergence to a stable 
state close to one of the stored states was studied on system sizes up to N = lo5. In 
figure 1 is shown a histogram of the relative number of starting states needing T steps 
to reach such a stable state. Both curves are at a = P /  N = 0.10 and m(0)  = 0.40. (This 
value of a should be large enough to avoid the spurious effects that occur as a -0  
and small enough to avoid the problems at a,=0.14, the critical value of a.) The 
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Figure 1. Histograms of convergence time at n = 0.100 and m(0) = 0.400. The broken curve 
is for N = 1088 and the full curve is for N = 64 000. 
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broken curve shows the histogram at N = 1088 and 12 500 initial states from 50 different 
sets of patterns. The full curve shows results at N = 64 000 and only 200 initial states 
from 10 sets of patterns. In all cases the system was allowed to iterate until a stable 
state or cycle of length two was reached and only those stationary states having a large 
overlap with a stored state were recorded in the above histograms. (A detailed descrip- 
tion of how to select the relevant stationary states can be found in [9].) 

There is an obvious difference between the two histograms in that the curve for 
large N is narrower and higher than that for the smaller N. Figure 2 shows the variance 
of the distribution in convergence times, ~7 = ( T2)  - (T)’, as a function of N. For the 
smallest N ( N  = 192) lo5 different initial states from lo3 different sets of patterns were 
used, while for the largest N ( N  = lo5) only 100 initial states from 10 sets of patterns 
could be used with a moderate computational effort. Kanter’s [8] calculations were 
carried out only up to a few thousand nodes, hence it is obvious from the figure how 
his unexpected conclusion that the width of the distribution increases with N was 
obtained. After increasing as N increases up to N - lo3, the width begins to decrease 
with further increases in N. This decrease in the width is most probably due to a 
decrease in the number of metastable states in an annulus centred around a stored 
state as N increases, an effect which was seen in previous simulations of the Hopfield 
model [ 1,9] and discovered .analytically by Koml6s and Paturi [4] and Gardner [5]. 
As these metastable states disappear, the energy landscape becomes ‘smoother’ and 
all paths leading to the stored state cross a similar ‘terrain’. 
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Figure 2. Variance of the distribution of learning times as a function of N for a = 0.100, 
m(0) = 0.400. 

The histograms in figure 1 also indicate that the average convergence time is 
increasing as a function of N. Figure 3 then shows a plot of the average convergence 
time as a function of In( N )  for several values of m(0)  in the range [0.350,0.600]. The 
critical overlap found by Forrest in reference [ 6 ]  lies inbetween m(O)=0.350 and 
m(0)  = 0.375 and is indicated in the plot by the difference in behaviour between the 
curves for these two values. Up to N - lo3 the graphs again show the same behaviour 
as found by Kanter but, as in the case of the width of the distribution, this quite rapidly 
changes with increasing N. First, for m(0)  = 0.375 and m(0)  = 0.400 there is a clear 
deviation from the linear behaviour seen for small N. This again is due to the 
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Figure 3. Average time to a fixed point as a function of N at a = 0.100. (e) m ( 0 )  = 0.350; 
(A) m(0)  =0.375;  (W)  m ( 0 )  =0.400; (0)  m ( 0 )  =0.500; ( 7 )  m ( 0 )  =0.600. Error bars are 
about the same size as the data points. 

disappearance of intermediary metastable states as N increases leading to a smoother 
energy landscape. For m ( 0 )  = 0.500 and m ( 0 )  = 0.600, however, the initial states are 
closer to the stored state and thus less affected by the presence or absence of the 
metasatable states. The plot also shows that the curves for m ( 0 )  above the critical 
overlap, are tending towards being parallel as N increases, although the possibility of 
convergence cannot be completely dismissed. In any case, the simple linear behaviour 
of ( T )  with In( N )  has been ruled out. Furthermore, system sizes up to N = lo5 are 
clearly not sufficient for determining the asymptotic behaviour of the convergence time 
in the Hopfield model. 

KomlCs and Paturi [4] have attempted analytical calculations of the time needed 
for convergence, but are able to derive an exact result only in the limit a -+ 0. In this 
limit, (and as N + 00) an initial state needs O(ln In N) steps to converge to a stored 
pattern. The present simulations suggest that such asymptotic behaviour will be very 
difficult to confirm on present computers. 

In summary, it has been demonstrated that the time needed for convergence to a 
stable state in the Hopfield model at finite values of a is not a simple logarithmic 
function of the number of neurons, N. Additionally, the width of the distribution of 
convergence times decreases for large N. 

The results presented here bring into question the relevance of the limit N + 03 for 
biological systems. Although the human brain has a total of 10" neurons, these neurons 
are structured into groups of the order of 104-105 neurons [ll]. Within these groups 
::,:re is very high connectivity and it is most likely to such groups that the present 
model should be applied and not to the brain as a whole. Hence, even though lo5 
neurons is insufficient for determining asymptotic quantities, these asymptotic quan- 
tities may themselves be of little physical or biological relevance if they only appear 
at system sizes much, much larger than those of typical biological systems. 
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